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Abstract. The analysis of binary code is a crucial activity in many
areas of the computer sciences and software engineering disciplines rang-
ing from software security and program analysis to reverse engineering.
Manual binary analysis is a difficult and time-consuming task and there
are software tools that seek to automate or assist human analysts. How-
ever, most, of these tools have several technical and commercial restric-
tions that limit access and use by a large portion of the academic and
practitioner communities. In this paper we introduce BARF, an open
source binary analysis framework that aims to support a wide range of
binary code analysis tasks that are common in the information security
discipline. BARF is a scriptable platform that supports instruction lift-
ing from multiple architectures, binary translation to an intermediate
representation, an extensible framework for code analysis plugins and
interoperation with external tools such as debuggers, SMT solvers and
instrumentation tools. The framework is designed primarily for human-
assisted analysis but it can be fully automated.

1 Introduction

1.1 Problem Description

The ability to inspect a program and to understand how it works is often a
strict requirement in many common practices of the information security disci-
pline. Among other things, program analysis is of critical importance to classify
programs as benign or malicious, to identify and cluster together semantically
equivalent malicious programs in real time attack detection, to discover soft-
ware security vulnerabilities in benign programs, to determine the set of input
data that could trigger a known bug in the program and to assess whether a
vulnerability is exploitable.

There is a range of program analysis techniques with a relatively long his-
tory of research and development in the computer sciences field, such as model
checking, type and effect systems, abstract interpretation, control and data flow
analysis and constrain satisfaction problem solving. While these techniques have
been regularly applied to security-oriented static and dynamic program analysis
with varying degree of success, the vast majority of the existing work is focused
on, or relies in the availability of, the source code of the program to be analyzed.



However, today’s Information and Communications Technologies (ICT) ecosys-
tem is characterized by a significant dependency on software systems for which
the source code is not readily available to parties with a legitimate interest
to determine their security properties. As a result, the tools and techniques
for security-oriented program analysis that are available and can be applied by
practitioners to real-world scenarios is limited.

The state-of-the-art techniques developed in the academic world are usually
not directly applicable to binary analysis due to a lack of suitable tools for the
purpose or to their lack of effectiveness or efficiency when applied to COTS
software components. Generally, publicly available open source binary analysis
tools offer a limited set of capabilities and target a small number of architectures
(x86, x86-64, ARM) and operating systems (WiNnDows, LiNnux, OS X).

On the other hand, the relatively low number of commercially available tools
that are adequate for multi-architecture, multi-platform binary program analy-
sis, such as IDA [7] and Hopper [8], come with a number of licensing restrictions
and price tags that make large scale adoption by information security practi-
tioners an onerous task.

In this paper we present BARF, an extensible open source framework for
multi and cross platform binary code analysis, that seeks to provide end to end
coverage for all the common program analysis tasks performed by information se-
curity practitioners and reverse engineers. The design of BARF encompasses file
format recognition and parsing, instruction lifting, binary translation and rep-
resentation of the program to be analyzed using an intermediate language. The
core analysis algorithms are implemented on top of the intermediate language,
which makes them architecture- independent, facilitates reuse and reduces the
cost of adding support for new architectures. This approach differs from most
existing tools, which are tied to specific architectures and operating systems.

1.2 Contributions

In this paper we present BARF, a cross-platform binary analysis framework.
Our main contributions can be summarized as follows:

— We provide a design for an extensible platform-independent binary analysis
framework. It operates on an intermediate representation of the binary code
resulting in a cross-platform framework by design.

— We implement the following core functionalities: a) intermediate language
support (REIL) b) an IR emulator, ¢) integration with a SMT solver and d)
translation between intermediate language to SMT expressions. We present
a design that allows analysts to model a piece of binary code as formal
formulae and to reason about it very easily.

— We give support for the X86 architecture. Support for other architectures
can be added easily to the framework as it was designed with that goal.

— We implement two analysis modules that are architecture-independent: a) a
module that generates a graph of Basic Blocks of a given binary and b) a
code analyzer that resolves constraints on code fragments and checks path
satisfiability.



— We built a tool on top of the framework which is a complex example of what
can be achieved. It finds ROP gadgets[18] on binary code, classifies them in
different types and verifies their semantic.

The framework is open source and can be downloaded from a public reposi-
tory at http://github.com/programa-stic/barf-project.

2 Binary Analysis

The two main approaches in binary analysis are static binary analysis and dy-
namic binary analysis. In the first case, the analysis is done without executing
the program under analysis. The first step of the analysis involves reading and
interpreting the format of the binary program such as ELF, PE, Mach-O, etc.
This provides information about the file which includes the location of its dif-
ferent sections, e.g., data and text sections. Once the text section is located, the
disassembly process may begin. This task is not straight forward. Some archi-
tectures, for instance, Xx86, have variable length instructions which makes the
process tricky. Moreover, assembly code lacks structure, meaning code and data
can be mixed together which complicates the process even further. The last step
consists of translation to the intermediate representation language over which
analysis algorithms are applied.

In contrast, dynamic analysis requires running the program in order to obtain
an execution trace. This is accomplished through dynamic binary instrumenta-
tion. There is a lot of information that can be obtained through this process,
for instance, the value of each register at each step of the program execution,
the list of system calls invoked by a program, etc. Then, the trace is analyzed
with offline methods. Limited path coverage is one of the main disadvantages of
this technique as only a small subset of all possible paths are exercised during
normal execution.

2.1 BARF

The framework was designed with the following goals in mind:

— Cross-platform support : It should be able to analyze binary programs com-
piled for any available platform (architecture 4+ operating system.)

— Extensibility : It should be simple to add support for new architectures.

— User-oriented : It should provide means for users to create their own analysis
tools or adapt existing ones using the framework.

Two of the primary goals of BARF are: a) cross-platform support and b)
extensibility, i.e. easy support for new architectures. Both goals are tackled by
the use of an intermediate representation language for assembly code. This way,
it is possible to abstract architecture-dependent details and work on a common
ground. It also encapsulates these details and provides a common interface to
the architecture so extensibility to new ones is straightforward.


http://github.com/programa-stic/barf-project

The criteria to determine the intermediate representation language to use
was based on a few desirable properties: a) expressiveness, it should be able to
model any architecture; b) side-effect free, instructions should change program
state explicitly (and in just one way) and c) simplicity, it should be a reduced
instruction set so analysis and implementation could be done easily. These are
discussed in section 3.1

3 System Overview

Figure 1 depicts the architecture of the framework. It is divided in three main
components: CORE, ARCH and ANALYSIS. The first contains essential modules.
The second, provides functionality specific to supported architectures. The last
component contains architecture-independent analysis algorithms.
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Fig. 1: Architecture of BARF.

The framework relies on external libraries for machine code disassembly and
executable format parsing, CAPSTONE [3] and PYBFD [16], respectively.

Core Component It is divided into the following modules: REIL, SMT and
BI. These are platform independent and are the building blocks of the rest of the
components. The REIL module provides definitions for the REIL language. Also,
it implements an emulator and a parser (which is used extensively in instruction
translation.) The SMT module consists of two parts. The first one, SMTLIB,
a generic interface to SMT solvers (based on PYSYMEMU [20] SMT support; we
currently use Z3 [9] as solver) at the lowest level. It is used to create variables and
set assumptions. Also, it can check satisfiability on different sets of formulas. The
second part is a module that translates REIL to SMT expressions. Finally, the BI
(Binary Interface) module is responsible for loading binary files for processing.

Arch Component Each supported architecture is provided as a subcomponent
and is structured in the same way (thus, simplifying framework extension to new



architectures). At the time, we provide support for the INTEL X86 architecture
(both, 32 and 64 bits).

Each subcomponent provides five well-defined modules. The first describes
the architecture, i.e., registers, memory address size and endianness. The second
describes the instruction set including information such as number of operands,
implicit operands, flags that modifies, etc. The third is the disassembling module
which, in this case, is just an interface with the disassembling library. Then
comes the parser module, that receives a string with disassembled instructions
and produces a series of an annotated objects that describe them. Finally, the
translation module provides functionality to transform each assembly instruction
into a semantically equivalent sequence of REIL instructions.

Analysis Component This component includes two sample platform-indepen-
dent modules: BAsIC BLOCK and CODE ANALYZER, which will be described in
section 4.

3.1 REIL

REIL (Reverse Engineering Intermediate Language) [10] meets the properties
discussed in section 2.1. Other IRs were considered, particularly, LLVM IR.
We choose REIL, primarily, because of its simplicity. It worth mentioning that
existing research on machine code to LLVM IR translation [5,12] was reviewed
but the language was judged much more complex than needed for this project.

REIL is a platform-independent intermediate representation of assembly code.
Originally designed for static code analysis, it is a low-level language that con-
sists only of 17 instructions. They are grouped in five categories: a) arithmetic,
b) bitwise, c¢) data transfer, d) conditional and c) miscellaneous. Each instruc-
tion has exactly three operands, the first two for sources and the third for the
destination. There are three type of operands: Integer Literals, Registers and
REIL addresses. Registers are string literals, for example, t0 or eax. REIL ad-
dresses are composed of two integer parts separated by a period, for example,
4000.05. The first integer represents the address of the instruction from the
source architecture while the second is used as REIL instruction numbering (as
one instruction can, and usually is, mapped to more than one REIL instruction.)
Some instructions require less than three operand, in that case, a special operand
type is used, the Empty operand.

As already mentioned, there is a mapping of one to many when translating
from the source architecture to REIL as REIL instructions have just one effect
on program state. For example, the X86 add instruction translation includes the
addition operation itself and flags modifications, such as the carry flag (CF.)

3.2 SMT

Another aspect of the framework involves interfacing with existing SMT solvers.
SMT (Satisfiability Modulo Theories) [9] extends the SAT problem with sup-
port for higher level theories, for example, bit-vector arithmetic. These concepts



allows to model semantics of assembly code quite naturally. Consequently, we
can reason about code in a simple way.

SMT solvers are very much in use in software security [21] both in static and
dynamic analysis. They can be used for vulnerability checking, exploit generation
and much more.

REIL can be represented by SMT expression easily as it is a reduced in-
struction set and each instruction has a single explicit effect on program state.
Therefore, translation between both worlds can be accomplished almost directly.
Table 1 shows an example of a basic translation. Each register is modeled as a
symbol, in this case, a bitvector and memory is modeled as an array of bitvectors.

X86 INSTRUCTION [REHLINSTRUC110N [SAJT‘EXPREsmON
mov eax, [ebp+0x8]|add [DWORD ebp, DWORD 0x8, DWORD t2]|(= t2_1 (bvadd ebp_0 #x00000008))
1ldm [DWORD t2, EMPTY, DWORD t1] (= (concat

(select MEM (bvadd t2_1 #x00000003))
(select MEM (bvadd t2_1 #x00000002))
(select MEM (bvadd t2_1 #x00000001))
(select MEM (bvadd t2_1 #x00000000)))

t1_1)
str [DWORD t1, EMPTY, DWORD eax] (= t1_1 eax_1)
add ebx, eax add [DWORD ebx, DWORD eax, QWORD t3]|(= t3_1 (bvadd ebx_0 eax_1))
str [QWORD t3, EMPTY, DWORD ebx] (= ebx_1 t3_1)

Table 1: REIL to SMT expressions translation example. Note that the trans-
lation of add ebx,eax includes REIL instructions for the computation of the
flags. In this case, they were omitted for the sake of brevity.

4 Analysis Modules

4.1 Basic Blocks

This modules provides functionality for control flow graph recovery (CFG.) It
operates on the intermediate language (as all modules within this component,)
therefore, algorithms implemented here are architecture-independent. It provides
two main ways for CFG recovery [22]: linear sweep and recursive descendant.
Additional algorithms can be easily implemented.

4.2 Code Analyzer

This module provides functionality for basic code analysis. It relies on the SMT
support provided by the CORE component. Instructions can be added to the
context of the analyzer, which are taken as assumptions, and then add pre-
and post-conditions on variables (memory locations and/or registers) and ask
the solver for satisfiability. All the burden of assembly to REIL translation and
REIL to SMT expression is taken care of transparently by the framework.

In figure 2 we can see the disassembly code of a function that operates on
local variables. In this function there are two memory accesses at addresses
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80483ed push ebp

80483 ee mov ebp, esp

80483f0 sub esp, 0x10

80483f3 mov eax, dword [ebp—0x8]
80483f6 mov edx, dword [ebp—Oxc]
80483f9 add eax, edx

80483fb add eax, 0x5

80483 fe mov dword [ebp—0x4], eax
8048401 mov eax, dword [ebp—0x4]
8048404 leave

8048405 ret

80483ed push ebp

80483ee mov ebp, esp

80483f0 sub esp, 0x10

80483f3 mov dword [ebp—0x10], Ox1
80483fa cmp dword [ebp—Oxc], 0x41424344
8048401 jne 0x804841c

8048403 cmp dword [ebp—0x8], 0x45464748
804840a jne 0x804841c

804840c cmp dword [ebp—0x4], Oxabcdef
8048413 jne 0x804841c

8048415 mov dword [ebp—0x10], 0x0
804841c mov eax, dword [ebp—0x10]
804841f leave

8048420 ret

Fig. 2: Assembly code of a function
that operates on local variables.

Fig. 3: Assembly code of a function with
multiple branches.

ebp-0x8 and ebp-0xc, respectively (lines 4-5.) These values are then used in
some calculations (two successive additions, lines 6-7) and the result is stored in
memory (line 8) and returned in the eax register (line 9). One possible question
that arises is what should be the values of the local variables so the function
returns a specific (desired) value. Figure 4 shows how to do exactly this. First,
it loads the instruction to be analyzed (lines 2-5). Then, it models registers
and memory locations involved in the operation (lines 8-12) and establishes
conditions that should hold (lines 15-19). Finally, it checks for satisfiability (line
22). If all conditions are satisfiable, it asks for possible values for the registers
and memory (lines 24-27). In this example, the constraint set is satisfiable and
one possible solution is: a = 3 and b = 5.
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# Add instructions to analyze

translation = barf.translate (0x80483ed, 0x8048401)

for addr, asm_instr, reil_instrs in translation:
for reil_instr in reil_.instrs:
barf.c_analyzer.add.instruction(reil_instr)

# Get SMT expression for registers and memory
eax = barf.c_analyzer.get_reg_expr(”eax")

ebp = barf.c_analyzer.get_reg_expr("ebp”)

a = barf.c_analyzer.get.mem_expr(ebp—0x8, 4)
b = barf.c_analyzer.get_mem_expr(ebp—Oxc, 4)
c barf.c_analyzer.get_mem_expr(ebp—0x4, 4)

# Set range for variable a and b
barf.c.analyzer.set_precondition (a>=2 a<=100)
barf.c.analyzer.set_precondition (b>=2 b<=100)

# Set desired value for the result
barf.c-analyzer.set_postcondition (c==13)

# Check satisfiability

if barf.c_analyzer.check() = "sat”:
# Get concrete value for expressions
print barf.c_analyzer.get_expr_value(eax)
print barf.c_analyzer.get_expr-value(a)
print barf.c_analyzer.get_expr-value(b)
print barf.c_analyzer.get_expr-value(c)

# Recover control flow graph
cfg = barf.recover_cfg(0x80483ed, 0x8048420)

# Get SMT expression for registers and memory
esp = barf.c.analyzer.get_reg_expr("esp”)

ebp = barf.c_analyzer.get_reg.expr(”ebp”)

rv = barf.c_analyzer.get_mem_expr(ebp—0x10, 4)
a = barf.c_analyzer.get.mem_expr(ebp—Oxc, 4)
b = barf.c_analyzer.get.mem_expr(ebp—0x8, 4)
c barf.c_analyzer.get.mem_expr(ebp—0x4, 4)

# Set stack pointer
barf.c.analyzer.set.precondition (esp==0Oxbfffceec)

# Traverse paths and check satisfiability
paths = cfg.all_simple_bb_paths(0x80483ed, 0x8048420)

for path in paths:
# If it is satisfiable , get possible assignments
# for memory and registers
if barf.c_analyzer.check_path_sat(path, 0x80483ed):
print barf.c_analyzer.get_expr_value(rv)
print barf.c_analyzer.get_expr-value(a)
print barf.c_analyzer.get_expr-value(b)
print barf.c_analyzer.get_expr_value(c)

Fig. 4: Extract of an analysis script
for assembly code on figure 2.

Fig. 5: Extract of an analysis script for
assembly code on figure 3.
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Another assembly code is shown in figure 3. This code has multiple branches
(lines 6, 8, 10) which means there are multiple paths from the function entry to
the exit node. The framework implements a function to list all paths between
two basic blocks and the code analyzer provides functionality to know which
of all these paths are feasible as well as possible values assignments for the
registers and variables involved. Figure 5 shows an extract of a script that does
this checking. First, it recovers the control flow graph of the function (line 2).
Then, as in the previous example, it models the registers and memory locations
involved as SMT expressions (lines 5-10). Finally, it iterates all simple path (path
with no loops) between the entry and exit basic blocks (line 18). For each path
(list of basic blocks) it check satisfiability and if so, it gets possible assignments
for registers and variables (lines 22-25). The path satisfiability check burden is
encapsulated within the CodeAnalyzer class. It basically adds each instruction
from each basic block in the path to the analyzer and includes restrictions on
the jump conditions forcing them to be true or false according to the case.

5 Case Study

Return-oriented programming (ROP) is a technique for software exploitation
which allows arbitrary computation by an attacker through the use of code frag-
ments —called gadgets— “borrowed” from the attacked program without the need
of code injection [24]. This technique is necessary to achieve successful exploita-
tion on modern operating systems as most of them implement mechanisms of
data execution prevention.

5.1 ROP Gadgets

In addition to the analysis modules implemented and described in the previous
section, we used BARF to create a tool to automatically search, classify and
verify ROP gadgets [18] in Xx86 binary programs. The tool is based on the ideas
exposed by Schwartz et al. in [17] and shows some of the capabilities of the
framework. It is a step forward in the direction of tools for automatic exploit
generation [17,1]. The tool has three stages. In the search stage, it looks for ret
instructions in the whole text section of a given binary. Once all ret instructions
have been identified, it disassembles backwards from these addresses trying to
recover valid instructions (this is done according to the algorithm described in
[18].) Sequences of instructions that disassembled correctly ending with a ret
instruction are considered candidate gadgets. The second stage, classification,
goes through the list of candidate gadgets and classifies each one of them in
different types (arithmetic, memory read/write, etc) through emulation. This
means that each gadget is executed using the REIL emulator provided by BARF
and its output analyzed. For instance, if we found that a register contains the
sum of other two (previously assigned with random values), then, we classify
that gadget as an arithmetic gadget. The third stage, verification, involves the
use of the SMT solver to verified that the type assigned in the previous step



is the correct one. It is worth noting that the last two stages are architecture-
independent. So, in principle, they can be applied to any supported architecture
provided that a list of gadget is given. The only architecture dependent part is the
first stage, the one involved in searching for gadgets. This happens due to some
architecture-specific details that have impact on gadget discovery. For instance,
in the x86 architecture one can search for ret-ended gadgets through all the text
section of a binary program with byte granularity. On other architectures, e.g.
SPARC, this cannot be done as instructions are aligned and gadgets have to be
searched in a different way. However, a general search stage can be accomplished
considering the details mentioned in [11] since disassembly and translation of
instructions to REIL is done transparently.

6 Related Work

There are several binary analysis frameworks. All of them differ in the approach —
they were motivated by different applications— as well as the set of functionalities
they provide.

BitBlaze [19] is a project that aims to provide a full binary analysis stack
covering almost the whole spectrum of related tasks. It is composed of: a) Vine,
a static analyzer; b) TEMU, a dynamic analyzer and ¢) Rudder, a symbolic exe-
cution engine. BAP [2] is a another framework based on Vine. It operates on an
intermediate language called BIL which explicitly represents all side effects of
assembly instructions. BAP has several built-in analyses and can perform sym-
bolic execution. Insight [13] is a static analysis framework designed for Unix-like
systems, supports 1386 and AMDG64 architectures and can load many file formats,
i.e., PE, ELF, Mach-0. It has its own IR called Microcode and provides tools to
manipulate and transform binary code. Jakstab [14] is another static analysis
framework based on abstract interpretation and designed to support multiple ar-
chitectures using customized instruction decoding (currently, supports x86 (32
bits) for PE and ELF file formats.) It uses an IR inspired by the semantics spec-
ification language (SSL) [6]. Analysis algorithms run on top of this language and
translation is done on the fly as the analysis is performed. Finally, the radare
project [23] is built under the Unix-liked concepts such as “everything is a file”
and “small programs that interact through standard I/0.” Currently is com-
posed of a set of utilities including a debugger, an assembler/disassembler and
a binary diffing tool.

7 Conclusion & Future Work

In this paper, we presented BARF, a binary analysis framework that aims at
being a cross-platform analysis tool. BARF provides means for analysis and
verification on binary code. Its intermediate language, based on REIL, encode
explicitly the side effects of the instructions of the source architecture. We, also,
presented a tool for ROP gadget finding built upon the framework. Our next step
is to provide support for the ARM architecture. Also, we plan to give support for



symbolic execution and taint analysis to cover a broader spectrum of common
binary analysis requirements.
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